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INVERSE OPTIMAL F I L T E R I N G  METHOD FOR THE INSTRUMENTAL 
SPREADING CORRECTION I N  S I Z E  EXCLUSION CHROMATOGRAPHY 

D. Alba and G.R. Meira* 
I N T E C  ( C O N I C E T  and Univ. Nac. del  Li toral)  

(3000) Santa Fe, Argentina 

ABSTRACT 

The Kalman f i l t e r  based techniques are adapted t o  solve the  
most general form of Tung's i n t eg ra l  formula, i.e. when a non-uni- 
form, non-symmetric cal ibrat ion m d e l  i s  employed t o  correct  chro- 
matograms obtained i n  s i z e  exclusion chromatography from instru-  
mental broadening errors .  Through t h i s  method, t he  inverse smooth- 
ing of a chromatogram contaminated with measurement noise of known 
s t a t i s t i c s  is optimally performed by minimizing the estimation 
e r ro r  variance. The method is numerically very "robust", improves 
the  s ignal  t o  noise r a t io ,  provides good validation checks, and 
does not involve any previous parameter estimation procedure. 

IMTRODUCTION 

Most of t he  methods of correction fo r  i n s t r u m e n t a l  broadening 

i n  s i z e  exclusion chromatography axe based on the  deterministic 

i n t eg ra l  equation by Tung (1): 

where t , T  : both represent e lut ion time o r  elution volume; 

z ( t )  : is t h e  baseline-corrected chromatogram; 

( * )  To whom correspondence should be s e n t .  
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2834 ALBA AND MEXRA 

g ( t , ~ )  : is  the  unit  mss (or normalized) detector response 

g ( t ) ,  fo r  a t ru ly  monodisperse polymer species of 

retention time T; and 

u ( t )  : is  the corrected chromatogram. 

With different degrees of success, numerous techniques have 

been proposed for solving Eqn.(l), but most of them introduce one 

o r  both of the following simplifications into the instrumental 

spreading function: 

a )  g( t ,T)  is adopted uniform, i.e. independent of the mean reten- 

t ion volume T, e.g. (1,2,3,4,5,6,7); and 

b)  g( t , . r )  is considered Gaussian, e.g. (8,9,10). 

When t h e  f i r s t  simplification is  adopted, the problem reduces t o  

that of a deconvolution. I n  the  case of the  non-uniform Gaussian 

assumption, the  variance is normally considered mean retention 

volume dependent. I n  some cases, e.g. (9,10), u ( t )  i s  obtained 

not through a direct  numerical solution of Eqn. (11, but a f t e r  e- 

laborate analytical  procedures. 

Among the few works that have attempted the direct  solution 

of Eqn. (1) with no assumptions on g ( t , r )  a re  those of Chang and 

Huang (11) and I sh ige ,  Jke and Hamielec (12). According t o  a com- 

parison of different techniques i n  (13,14), the best numerical me- 

thod so  f a r  was that  of (12). 

The problem i n  hand is, i n  fact ,  a special  case of the much 

more general one of input estimation or inverse f i l ter ing.  Typic- 

a l ly ,  a measurement signal mst be corrected when the transducer 

frequency response is  not f l a t  over the whole signal frequency 

spectrum. For example, the inverse f i l t e r ing  of a ventricular 

pressure record is considered i n  (15); and the recuperation of 

seismic responses i n  o i l  prospection work is studied i n  (16, 17 
and 18). I n  these last three publications, different adaptations 

of the Kalman f i l t e r  (with or vithout smoother) were proposed and 

implemented t o  solve a n  inverse f i l t e r ing  problem. 
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INVERSE OPTIMAL FILTERING METHOD 2835 

I n  t he  present work, the f e a s i b i l i t y  of t he  use of inverse 

optimal smoothers f o r  s i ze  exclusion chromatography broadening 

correction is  demonstrated. The method has many cha rac t e r i s t i c s  i n  
common with the  mentioned works (16, 17 and 18). Nevertheless, it 

w i l l  be described here w i t h  some de ta i l ;  with pa r t i cu la r  emphasis 

on the special  features  of t he  problem. 

THEORY 

The System Model 

The application of the Kalman f i l t e r  techniques requires a 

system description by means of a linear state-space s tochast ic  mo- 

de l  t h a t ,  i n  our case, w i l l  adopt t he  following d i sc re t e  single- 

input single-output form: 

where k = 0,1,2,... : is the  independent d i sc re t e  t i m e ;  

- x(k) 
w ( k )  and  v(k) : a re  zero-mean, Gaussian dis t r ibuted white 

: is  the  state vector; 

random sequences of variances q(k) and 

r(  k)  , respectively; 

F(k) : i s , i n  general, a time-varying m a t r i x ;  and 

- b(k )  ,LT(k) : are ,  i n  general, time-varying vectors. 

The discrete  s tochast ic  version of Eqn. (1) can be w r i t t e n :  
+a 

kO=-- 
Z(k) = C g(k,&,)*u(ko) + v(k)  (3) 

The time-varying cal ibrat ion g ( k , h )  can be considered as a 

s e t  of discrete  system impulse responses, with the impulses ap- 

pl ied at times ko . Note that i n  order not t o  introduce t i m e  

s h i f t s  between the  measured and the  corrected chromatogram, the 

system mst be assumed non-causal. This means tha t  t he  response 

w i l l  start t o  appear before t h e  application of the impulse, norm- 

ally taken t o  occur a t  t he  maxim or at some mean value. Fig. la 
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( a )  

ALBA AND MEIRA 

( b )  

FIGURE 1 : A time-varying spreading function (a); and its corre- 
sponding g* function (b). 

represents a time-varying impulse response, with the impulses ap- 

plied at different ko's . I n  w h a t  follaws, it w i l l  be assumed 

that of ko , a l l  the responses have a f i n i t e  number 
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INVERSE OPTIMAL FILTERING METHOD 2837 

of non-zero elements. Consider now some transformations t o  Eqn. 

(3)  t h a t  w i l l  allow u s  t o  obta in  t h e  system state-space m d e l  i n  a 

s t ra ight forward  fashion, and without ca lcu la t ions .  As i l l u s t r a t e d  

by Fig. l b ,  l e t  us  f i r s t  def ine  t h e  function @ ( k , b )  , such t h a t  

g*(k-ko,ko) = g(k,ko) (4) 
Call -c and d t h e  lower and upper limit of k with non-zero values 

of f l ( k , b )  , respec t ive ly .  Then Eqn. (3)  y i e lds :  

ko=k+d 

ko=k-c 
z ( k )  = E g*(k-ko,ko).u(ko) + v(k )  ( 5 )  

and wi th  i=k-ko, 

d 

i=-c 
( 6 )  z ( k )  = E g*( i ,k - i ) .u (k- i )  + v(k )  

The lower p a r t  of Fig. 2 shows a non-causal flow-diagram represen- 

t a t i o n  of Eqn. (6) ,  where p-1 ind ica t e s  t h e  backshi f t  opera tor  

such t h a t  p - l [ u ( k ) ]  = u(k-1) . The instantaneous set of weights 

g* of Fig. 2 can be obtained from t h e  successive row vectors  

- hT(k) of t h e  following matrix H*, where t h e  rows i T ( k )  extend 

a t  least t o  t h e  ca l ib ra t ion  l i m i t s  of t h e  chromatographic column 
s e t .  

H* = 

1 ... 
... g* ( -c ,k-d) 

. . g*(-c+l,k-d) g*(-c,k-d+l) 

g* (d , k-d-1) g*( d-1, k-d) 

g*(d,k-d) g*(d-1,k-d+l) . .. g*(-c+l,k+c-1) g*(-c,k+c) 

g*(d,k-d+l) g*(d-1,k-d+2) . .. g*(-c+l,k+c) g*(-c,k+c+l) 

. . . g*( -c+l ,k+c-2) g* (-c ,k+c-1) 
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INVERSE OPTIMAL FILTERING METHOD 

t k 0 - O  

2839 

FIGURE 3 : H* m a t r i x  corresponding t o  t h e  spreading  f u n c t i o n  of 
Fig.  1, showing i ts  45" "diagonals". 

or ;  

H* = 

hT (k-1 ) 

Note t h a t  t h e  s u c c e s s i v e  45' "diagonals" of H* are made up 

o f  t h e  elements of t h e  i n d i v i d u a l  impulse responses. This is il- 
l u s t r a t e d  i n  Fig. 3. L e t  us d e f i n e  now n = c+d+l state v a r i a b l e s  

x i  (i=l,. ..,n) t o  c o i n c i d e  w i t h  t h e  successive va lues  of t h e  in-  
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2840 ALBA AND MEIRA 

put,  a s  indicated i n  Fig. 2. The system model output equation, 

which is  equivalent t o  Eqn. (2b) ,  m y  thus be w r i t t e n :  

z(k) = - hT(k).x(k) + v(k) ( 8 )  

where LT(k) i s  time-varying according t o  Eqn. (7) .  

The s t a t e  equation i t s e l f  allows the specification of the 

spectral  character is t ics  t h a t  can be simultaneously assigned t o  

a l l  s t a t e  variables,  and consequently t o  u(k) which coincides 

with xd+l(k). These spectral  character is t ics  are  imposed by f i l -  

t e r ing  t h e  white noise input w(k) through an autoregressive op- 

erator ,  as  indicated In the  upper half of Fig. 2. Note t h a t  the 

order of t h i s  autoregressive operator is equal t o  the  system order 

(which is  normally relat ively high). For t h i s  reason, a very sat-  

isfactory pre-f i l ter ing operation could, i f  desired, be imple- 

mented. The s t a t e  equation, which is  equivalent t o  Eqn. (2a ) ,  w i l l  

have the following s t ructure:  

- 

0 o l o - * * o  0 1 ... 0 0 O l  . . . .  . . .  . . .  . .  
0 0 0  0 1  

L -I 

Note that mtrices F and a re  constant and i n  t he  con- 

t r o l l a b l e  canonical form. The l a s t  row of F ( t h a t  we s h a l l  c a l l  
vector f), allows the  specification of the s ta ted spectral  char- 

a c t e r i s t i c s  of u(k).  When = 0 , then u(k) will be a white 

noise. The inclusion of non-zero elements i n  f w i l l ,  i n  general, 

t r ans fom u(k) i n t o  a %oloured" random sequence. 

The Inverse Optimal Smoother 

Under the assumption t h a t  the system is exactly represented 

x ( k )  t h a t  by Eqns. ( 2 ) ,  t he  "best" l i n e a r  estimate of the state 
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INVERSE OPTIMAL FILTERING METHOD 2841 

can be obta ined  from t h e  noisy measurements {z(k)  ; 0 < k < M} i s  

g iven  by t h e  output  &(k/M) of t h e  opt imal  smoother. With i (k /M)  

w e  shall i n d i c a t e  t h e  “ c o n d i t i o n a l  estimate of 5 at t i m e  k g iven  

t h e  measurements z up t o  time M”. For  g e n e r a l  r e f e r e n c e s  see 
( l9 ,2O).  The smoother i s  optimal i n  t h e  sense  t h a t  at each t i m e  k ,  

t h e  mean square  e r r o r  a s s o c i a t e d  w i t h  t h e  estimate &(k/M) : 

is  smaller t h a n  t h a t  achieved by any o t h e r  l i n e a r  estimator. Fur- 

t h e m r e ,  i f  we  a l s o  make t h e  f a i r l y  c o m n  assumption t h a t  t h e  

i n i t i a l  s ta te  and t h e  t w o  random sequences s a t i s f y  Gaussian proba- 

b i l i t y  d i s t r i b u t i o n s ,  t h e n  t h e  mean square  e r r o r  is less t h a n  t h a t  

achieved by any o t h e r  estimator, l i n e a r  or non-linear. Fig. 4 il- 

l u s t r a t e s  t h e  opt imal  s m o t h e r  s t r u c t u r e .  The first stage corre-  

sponds t o  t h e  K a l m n  f i l t e r  and inc ludes :  

a )  The d i s c r e t e  R i c c a t i  equat ion:  

C(k+l /k)  = F C(k/k) FT + k q(k)  kT ( 1 0 s )  

C(k/k) = C(k/k-1) { I - h ( k )  [LT(k) C(k+l/k)  &(k) + 

r (k11- l  hT(k)  CT(k/k-l)l ( l o b )  

where: C(k/k) i s  t h e  e s t i m a t i o n  e r r o r  covar iance  m t r i x ,  i.e. 

z ( k + l )  = z ( k + l )  - - hT(k+l) F - G(k/k) ( I l b )  

w i t h  
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INVERSE OPTIMAL FILTERING METHOD 2843 

- 
where: & and Po : are  the  mean and covariance mtrix of ~ ( 0 )  , 

respectively ; 

- g(k+l )  : is  the f i l t e r  gain; and 

Z(k+l) : is the innovations sequence. 

I n  the second stage, the fixed-interval smoother algorithm taken 

from ( 1 9 ) :  

- s ( k )  = l ( k )  r - l (k )  kT(k)  (12a) 

w i t h  

- X ( M )  = 0 

i s  solved backwards i n  t h e .  

Note that even though the f i l t e r  section provides the es t i -  

mate $(k/k),  and the smoother section the  estimate g(k/M), we 
a re  really only interested i n  the  element (d+ l )  of these vectors, 

i.e. 

o r  

Clearly, i(k/M) is  a bet ter  estimate than G(k/k) , but i n  the 
f i r s t  case, a higher computational cost mst be paid.  The variance 

of t h e  estimation error  associated with ^u(k/k) i s  the  element 

(d+l ,d+l)  of Z(k/k),  and is automatically provided by the  f i l -  

t e r .  The variance of the estimation error corresponding t o  G(k/M) 

must be especially calculated however [see (lg)], but is always 

lower than that  of the f i l t e r .  

Because of the  very special structure of the system model, 

the  f i l t e r  section inherently includes a suboptimal smoother: the 

so called fixed-lag smoother. I n  fac t ,  i f  t h i s  lag is  limited t o  
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2844 ALBA AND MEIRA 

d ,  a suboptimal estimate (better t h a n  G(k/k) )  is produced, without 
extra  calculations,  In  e f f ec t ,  since 

xl(k+d) = x2(k+d-l) = ... = xd(k+l )  = ~ ~ + ~ ( k )  ( 1 4 )  

then  , 

il(k+d/k+d) = id+,(k/k+d) (15) 

and therefore,  

In other words, t h e  f i l t e r  estimate $(k+d/k+d) i s  t h e  fixed-lag 
smoothed estimate of u(k) , and t h e  corresponding estimation e r ro r  

variance is  element (1,l) of E(k+d/k+d) . Note also t h a t  by ar- 
t i f i c i a l l y  increasing t h e  system dimension n (with an  appropri- 
a t e  inclusion of zeroes on t h e  lef t  hand s ide  of m a t r i x  HI), the  

suboptimal smothe r  l a g  is a l s o  increased. When c > d , the lag 

can be increased t o  c by f i l t e r i n g  z(k) backwards i n  time. 

The Algorithm Adjustment 

The following parameters must be set i n  the given algorithm: 

a) The h X  hOW 04 matrLix F (ILOW N d o h  41 
Only two cases will be considered: f = 0 and 2 = (0 Q...l). 

I n  t he  first case, u(k) is assumed a white noise process; i n  t h e  

second a "random walk" process. By assuming u(k) a white noise, 
t h e  greatest  f l e x i b i l i t y  i n  i t s  estimation is provided; and one 
could, fo r  example, recuperate delta functions when analyzing m- 
nodisperse samples. When a polidisperse sample is analyzed, then a 

smoothing e f f ec t  (that i n  general improves the numerical r e s u l t s )  
m a y  be obtained i f  u(k) i s  considered a random walk. As explain- 

ed below, the  other advantage of assuming 2 = (0 O.. . l )  i s  relat- 
ed t o  t h e  mean of the innovations sequence. 

b) The LnLtial conditions 3 and Po 

I n  pract ice ,  it has been found adequate t o  choose zo = 0 and 

Po = I ; and t o  solve the  Riccati equation Kith hT(0) u n t i l  
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INVERSE OPTIMAL, FILTERING METHOD 2845 

s teady  state c o n d i t i o n s  are reached. Then, t h e  chromatogram above 

t h e  b a s e l i n e  m y  be d i r e c t l y  processed.  I n  t h e  examples of t h e  

fo l lowing  s e c t i o n ,  t h i s  procedure w a s  adopted i n  a l l  cases. 

c )  The meahmentent noise vahiance k ( h )  

T h i s  va lue  can  be e s t i m a t e d  from t h e  n o i s e  t h a t  normally con- 

t a m i n a t e s  t h e  d e t e c t o r  b a s e l i n e  b e f o r e  and after t h e  polymer peak. 

It w i l l  be  h e r e a f t e r  considered c o n s t a n t ,  of v a l u e  r . 
d )  The input vahiance y(h1 

Consider  first some w a y s  of e s t i m a t i n g  q ( k )  when f = 0. 
I n  t h i s  case, t h e  state v a r i a b l e s  are assumed whi te  p r o c e s s e s  w i t h  

a var iance:  

2 
uxi(k) = q(k-n-l+i) ; ( i  = 1,2,  ..., n )  (18) 

(Ua(k) w i l l  denote  t h e  v a r i a n c e  of a ( k ) ,  and Z ( k )  i t s  mean 
v a l u e ) .  It i s  also easy t o  show t h a t :  

2 " 2  
u z ( k )  = C h i ( k )  q(k-n-l+i) + r 

i=1 
(19)  

2 Eqn. (19) has no s o l u t i o n  because i S  unknown. h e n  i f  t h i s  

f u n c t i o n  could  b e  e s t i m t e d ,  Eqn. (19) i s  of t h e  same type of Eqn. 

(3) (which we  are t r y i n g  t o  s o l v e ) ,  and t h e r e f o r e  is still of no 

p r a c t i c a l  u s e  u n l e s s  some s i m p l i f i c a t i o n s  are added. The s i m p l e s t  

s i t u a t i o n  i s  t o  c o n s i d e r  w(k) s t a t i o n a r y ,  and t h e  spreading  func- 

t i o n  uniform. Under t h e s e  c i rcumstances ,  an e s t i m a t e  f o r  a con- 

s t a n t  v a l u e  of  q nay be  obta ined  from Eqn. (19) as follows: 

Uz(k) 

2 
uz - r 

q = -  

" 2  
C h i  

i=1 

with 
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ALBA AND MEIRA 2846 

Eqn. (20) i n  genera l  overestimates q because u(k)  is a highly 

co r re l a t ed  sequence ins tead  of a white noise. Nevertheless, Eqn. 

(20) may provide an i n i t i a l  guess of q t h a t  can be usefu l  i f  

properly handled. In case of a non-uniform spreading function, t h e  

denominator of Eqn. (20a) could correspond t o  t h e  impulse response 

at  an intermediate r e t en t ion  t i m e .  

Consider now w(k) non-stationary (i.e. q va r i ab le  with k). 

This assumption has been found e s s e n t i a l  f o r  particularly il l-con- 

d i t ioned  cases. In f a c t ,  i f  r is accura te ly  estimated, t h e  opti-  

m a l  performance of t h e  fi l ter-smoother is produced when t h e  exact 

q ( k )  is u t i l i zed .  Note t h a t  f = 0 implies w(k) = u(k+c+l) . 
Thus, i f  u(k+c+l) can be somehow estimated, then one m y  simply 

w r i t e  

q (k)  = [;(k+c+1)12 (21) 

For example, G(k+c+l) i n  EQn. (21) could be t h e  smoother sol- 
u t ion  obtained with a constant q. Al te rna t ive ly ,  t h e  following 

approximate formula ( t h a t  m y  be a l s o  derived from Eqn. (19) 

assuming no spreading),  has been found t o  provide s a t i s f a c t o r y  

r e s u l t s :  

q (k)  = C [z (k+c+l ) I2  (22) 

where C is an appropr ia te ly  chosen p o s i t i v e  constant. For C = 1, 

q(k)  w i l l  be, i n  p r inc ip l e ,  underestimated f o r  u(k)  < z (k )  and 

overestimated when u(k)  > z (k ) .  The es t imates  of q(k)  based on 
Eqns. (21) or  (22) have l i t t l e  s t a t i s t i c a l  s ign i f icance  because 

they a r e  obtained from s ing le  values of u(k+c+l) or  z(k+c+l).  

This means that sudden changes i n  t h e s e  functions w i l l  be r e f l ec t -  

ed on t h e  estimate q(k) .  A simple remedy is t o  smooth u(k+c+l) 

o r  z (k+c+l )  through an averaging f i l t e r  i n  order t o  keep t h e  

shape of these  curves while eliminating t h e  undesirable varia- 

t ions. 

Consider now t h e  estimation of q(k) when f = (0 0...1). 
It may be shown t h a t  when w(k) i s  assumed s t a t iona ry ,  t h e  e- 

quivalent formula t o  Eqn. (20) is: 
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INVERSE OPTIMAL FILTERING METHOD 2847 

2 
'Az(k) - 2r 

q =  (23a) 
" 2  
C hi 

i=1 

with 

A simple expression fo r  q(k) 

w(k) = u(k+c+l) - u(k+c) = Au(k+c+l) , and therefore:  

can be developed from the  f ac t  t h a t  

For t h e  reasons given above, but par t icular ly  i n  t h i s  case, it is 

preferable t o  employ averaged versions of AG2 instead of AG2 
as such. The following equation was found adequate: 

a 
C [A; (k+c+l+i)I2 

i=-a 
q(k) = C '  

(2a+1) 

where C' is an  adjustable g a i n  and (2a+l)  is the  number of 

points averaged at each step. Clearly, here again, an i t e r a t i v e  

procedure t h a t  estimates q(k)  from AG(k), and then ;(k) and 

Aii(k) from the filter-smoother, w i l l  normally provide the  best  

resul ts .  The r e su l t s  of the filter-smoother are not too sens i t i ve  

t o  its adjustment, and relat ively crude estimates of the shape of 

q(k) a r e  normally suff ic ient  fo r  sat isfactory resul ts .  For exam- 

p l e ,  i n  cer ta in  cases,  Eqn. (25) provides a smooth q ( k ) ,  with a 

shape which is similar t o  that of z(k) .  In such cases, and even 

when f = ( 0  0. ..1), an estimate of q(k) may be d i r ec t ly  obtain- 

ed from the  simpler re la t ionship of Eqn. (22). This s implif icat ion 

i s  conveniently u t i l i z e d  i n  Examples 2 and 3 below. 

Even though the  covariance matrices C(k/k-1) and C(k/k) 

depend on the  individual values of r and q (k ) ,  t he  f i l t e r  or  
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t h e  smoother estimate of u(k) is a function of t he  q (k ) / r  r a t i o  

only. I n  a very ill-conditioned problem, t h e  r e su l t s  become sen- 

s i t i v e  t o  deviations of t h i s  r a t i o  from i t s  correct value. In more 

relaxed s i tuat ions however, re la t ive gross errors  i n  q (k ) / r  can 

be absorbed with s t i l l  good resul ts .  

The solution val idat ion 

The solution checks my  be c l a s s i f i ed  in to  two w i n  groups: 

those which a re  common t o  any other input estimation technique, 

and those spec i f i c  t o  t h e  method. The obvious checks i n  t h e  f i r s t  

group are: a) t h e  solution mst be non-negative; b) by processing 

c( k) through the  system spreading function, the noise-free meas- 
ured function should be recuperated; and c )  t he  area under t h e  co- 

rrected chromatogram must be equal t o  t h a t  of the measured curve. 

It should be emphasized t h a t  t he  check under b) is only a neces- 

sary (but not a su f f i c i en t )  condition for good r e su l t s ;  t h e  reason 

being the  algorithmic s ingular i ty  of Eqns. (1) or (3). This h- 

p l i e s  that there  are, in  principle,  i n f i n i t e  possible numerical 

solutions G(k) t h a t  can recover y(k) .  With regards t o  t h e  check 

under c ) ,  the area under the  corrected curve w i l l  be smaller than 

that of t he  or iginal ,  only when the  r a t i o  q ( k ) / r  i s  grossly un- 

dervalued. With overvalues or moderate undervalues of q(k) /r ,  
then numerically meaningless discrepancies are observed. 

The checks which are spec i f i c  t o  the  method are a l l  based on 

the  analysis of t h e  innovations, t h a t  ideal ly  should be zero-mean, 

Gaussian white sequences. f i r t hemore ,  t he  observed innovations 

should match the  corresponding time-varying variance estimated 

through t h e  filter: 

2 
a, 
z (k )  - = hT(k) C(k/k-1) &(k) + r (26) 

Note that  t h i s  last quantity depends a g a i n  on the  individual val- 
ues of q(k) and r. The f i l t e r  r e su l t s  may be optimized by ana- 

lyzing t h e  innovations (and t h e i r  estimated variances) under dif- 

ferent adjustments. The innovations mean w i l l ,  in general, be 

c loser  t o  zero with 2 = (0 0.. .l) = 0 . This may be than with 
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INVERSE OPTIMAL FILTERING METHOD 2849 

0 50 100 k 

FIGURE 5 : Example 1; o r ig ina l  curves and "best" solution with 
t h e  correct constant r a t i o  q / r  = 100. 

explained by the  o f f se t  elimination e f f ec t  t h a t  occurs when i n t e -  

grat ion is  incorporated i n t o  a closed loop. 

EXAMPLES OF APPLICATION 

Three applications of t he  technique w i l l  be considered. 

While the  f i r s t  two examples are synthetic,  t he  t h i r d  is based on 

r e a l  experimental data. All  t h ree  examples were solved by means of 

a VAX 111780 computer. 

Example 1 

By processing the curve u(k) shown i n  Mg. 5 through a 

time-varying f i l t e r  defined by the set of impulse responses of 

Fig. l a ,  a noise-free chromatogram y(k)  is obtained. This curve 

was then corrupted by a Gaussian white noise of a r e l a t ive ly  low 

variance (10-5) , t o  provide z(k).  Taking in to  account only the  

sect ion of t h i s  series above t h e  baseline, and defining the  s ignal  

t o  noise r a t i o  SNR as: 
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2850 ALBA AND MEIRA 

M 
C z2(k) 

k=l 

( M  - 1) r 
SNFt .= 

one obtains, i n  t h i s  case, SNR 2 17400 2 1322 . Throughout t h i s  

Example = (0 O. . . l )  , and fo r  simplicity a constant q w i l l  be 

adopted even though b e t t e r  results can, i n  pr inciple ,  be obtained 

with a variable r is 10-5 . 
The best estimate of q m y  be obtained from: 

q(k).  Clearly, the  best  estimate fo r  

1 M 
q = -  C IAu(k)I2 (28) 

(M - 1) k=l 

Calculating t h i s  quantity for  the Au(k) values above the  base- 

l i n e ,  0.001 is  obtained. Thus, the best  q / r  is 100. Note t h a t  

if estimated through Eqn. (231, a value of q approximately 10- 

fold larger  would have been obtained. The results of the f i l t e r -  

smoother when t h e  best  values fo r  q and r are adopted are a l so  

shown i n  Fig. 5. While t h e  f i l t e r  estimate &(k/k) fails t o  repro- 

duce the  or iginal  curve, both the fixed-lag smoother output 

fi(k/k+d) and t h e  fixed-interval smother  output G(k/M) are prac- 

tically overlapped with u(k) . The innovations corresponding t o  

t h i s  case are represented i n  Fig. 6d, together with the estimated 

limits. Ideal ly ,  the innovations should l i e  within these ",( k) 
limits for  approximately two thirds  of t he  t i m e ,  and t h i s  is 

roughly the case i n  Fig. 6d. The innovations sequence i ( k )  i s  

theoret ical ly  zero-mean Gaussian white, but i ts  variance is time- 

varying and therefore  i ( k )  i s  non-stationary. In s p i t e  of t h i s  

f a c t ,  it was found useful t o  calculate  t he  sequence sample varian- 

c e  a%, t h e  autocorrelation function and the  power spectrum. Cleaf 

ly, t h i s  approximation w i l l  not be val id  when Z(k) is highly non- 

stationary.  Figs. 6e and f i l l u s t r a t e  t he  previously mentioned 

statistics. I n  t h e  case of t h e  power spectrum, the  highest fre- 

quency shown corresponds t o  one half of t he  sampling frequency. 

Both the  autocorrelation and t h e  power spectrum show some l o w  fre- 
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2852 ALBA AND MJ3I.W 

k 0 50 100 

FIGURE 7 : Example 1; solution for q/r = 104 . 

1 
k 0 50 100 

FIGURE 8 : Example 1; solution for q/r = 1 . 
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INVERSE OPTIMAL FILTERING METHOD 2853 

quency o s c i l l a t i o n s .  This,  and t h e  f a c t  t h a t  t h e  smoother esti- 
mate is s a t i s f a c t o r y  while t h e  f i l t e r  es t imate  is not i nd ica t e  

that some use fu l  information is  st i l l  remaining i n  t h e  innovations 

sequence. 

For i l l u s t r a t i v e  purposes, t h e  problem was  solved aga in  wi th  

t h e  same value of r, but with erroneous estimates of q . I n  Figs. 

7 ,  6a, 6b, and 6c, q = 0.1 ( o r  q / r  = l O O O O ) ,  while i n  Figs. 8, 
6g, 6h, and 6 i ,  

i) 

q = 10-5 ( o r  q / r  = 1). Note t h e  following: 

I n  both cases ,  t h e  so lu t ions  are inadequate, but while y(k/M) 

p r a c t i c a l l y  coincides with z (k )  when q = 0.1, t h i s  same 

funct ion  is crudely of f  those  values if q = 10-5 . 
ii) When q i s  overvalued, t h e  innovations are less co r re l a t ed  

a t  high lags than  i f  t h e  bes t  value of q is employed. The 

oppos i te  occurs a t  low lags however, and t h e  ove ra l l  var iance  

of  z (k )  is f i n a l l y  higher than before. If q is under val-  

ued, t h e  s i t u a t i o n  i s  c l e a r l y  worse a t  a l l  lags.  

iii) The standard devia t ion  u-.(~) i s  overestimated i f  q i s  

overvalued, and underestimated when undervalued. 

"he high frequency components of t h e  innovations are dominant 

i f  q is  ove res t imted .  Conversely, t h e r e  is a low frequency 

components dominance when q is  underestimated. 

The percentages of va r i a t ion  of t h e  areas under t h e  cor rec ted  

chromatograms wi th  respec t  t o  those  under t h e  measured curves 

a r e  -0.02%, -0.1% and -0.25% when q = 0.1, 0.001 and 10-5, 

respec t ive ly  . 

i v )  

v )  

Example 2 

This Example was first suggested by Chang and Huang ( 6 ) ,  and 
attempted l a t e r  on by Hamielec and co-workers (12). The problem is 

i l l u s t r a t e d  i n  Fig. 9 ,  which represents  t h e  following: u ( k ) ,  t h e  

uniform spreading function g ( k ) ,  t h e  broadened curve z ( k )  and 

t h e  recuperated u ( k )  by method 2 proposed i n  (12).  Note t h a t  

while g(k) was generated from an a n a l y t i c a l  expression, and z(k)  
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2854 ALBA AND MEIRA 

FIGURE 9 : Example 2; [ a f t e r  Hamielec and co-workers (12)]. 

w a s  reproduced from a table  of numbers given i n  (12), u(k) and 

u( k) were obtained by digit izing the i r  graphical representations. 

For t h i s  reason. minor distorsions i n  these last two curves a re  t o  
be expected. The solution G(k) shown i n  Fig 9 is practically co- 

incident with that of ( 6 ) ,  and with that of method 1 i n  (12). 

Clearly, these techniques are not able to  appropriately recover 

the double-peaked input. 

Consider now the solution via the present mthod. Assuming 
that the integer values of the table  for  z(k) are  all accurate 

t o  the  last digi t ,  then one ma,y interpret  those numbers as conta- 

minated by a noise v(k) of a uniform probability density func- 

t ion w i t h  limits a t  k0.5. I n  t h i s  case, 0: = 1/12 and w e  adopt 

r = 0.1 . The limits of the f i n i t e  spreading function were taken 

a t  -c = d = 20. Beyond these values, the spreading function is be- 

low 10-3 . 
As a f i r s t  attempt, one could t r y  t o  solve t h i s  Example 

through a constant obtained by minimizing the  variance of the 

innovations sequence. The solution i(k/M) is not shown here, but 

is very similar t o  that  of Fig. 9 ,  however. For bet ter  resul ts ,  a 
variable q(k) mst be adopted, and Fig. 10 i l l u s t r a t e s  t h i s  sit- 

q 
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m 

.O 

0 

. 01 

.om 

0. 

.m 

0. 

-.ooo5 

0 I 

“ 2  ( k )  
J 

I 
u- = 0.18G3 

Z 
el 
- f = (O,O, ... 1) .m 2 = 0.006 

A 

C ’ =  4 

k - z ( k ) r y (  k /M)  

0. 

t ~ & y ! y v  A 

-,m -?( k )  
,-u- d k )  

0. 
0 66 0 I 

FIGURE 10 : Example 2;  so lu t ions  considering u (k )  whi te  (a,b); 
cons ider ing  u ( k )  a random walk sequence ( c ,d ) ;  and 
obtained through a two-step procedure (e,f). 
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2856 ALBA AND MEIRA 

FIGURE 11 : Example 3; experimental chromatogram and spreading 
function. 

uation. Note f i r s t  that (even though not shown), all three solu- 

t i ons  represented i n  Fig. 10, as  w e l l  as t h a t  previously mentioned 

with a constant z( k)  without appreciable 

error.  

q, manage t o  recuperate 

The solution of Fig. 10a and 10b w a s  obtained adopting f = 0 
and calculating q(k) through Eqn. (22) with C = 1. Clearly, t h e  

peaks of i(k/M) overpass those of u(k) , and the  innovations 

mean exhibits a cer ta in  bias. In Figs .  1Oc and 10d, Eqn. ( 2 2 )  is 

used a g a i n  (with C = l), i n  s p i t e  of the f ac t  t h a t  i n  t h i s  case, 

- f = (0 0...1). "he re su l t  is similar t o  the  previous, but now the  

innovations mean is very close t o  zero. Figs 10e and 10f were ob- 

tained through the following two-step procedure: i) based on the 

estimate of u(k) found i n  Fig. 10a, Eqn. (25) with C '  = 4 was 

employed t o  estimate q(k);  and i i )  with t h i s  estimate, the 

smoother was run again with t o  provide t h e  shown 
resul ts .  Clearly, t h i s  solution is very acceptable. The corre- 

sponding innovations have a near zero mean, and the lowest sample 

variance of a l l  three cases. 

f = (0 O. . . l )  
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INVERSE OPTIMAL FILTERING METHOD 2857 

Example 3 

Curve z(k) i n  Fig. 11 represents the chromatogram of a PS 
standard of molecular weight 4 = 525, when fractionated through 

a n  A-802 Shodex column mounted on a Series 3-B Perkin E l m e r  l iquid 

chromatograph. The chromatogram of pure benzene g(k) is adopted 

as the uniform spreading function. The polymer sample is expected 

t o  be integrated by the f i r s t  PS oligomers, wfth preponderance of 

t he  pentamer. Ideally therefore,  de l t a  functions ought t o  be recu- 

perated, with the  highest peak a t  a molecular weight of 520. 

Three possible solutions t o  t h i s  problem are found i n  Fig. 

12. I n  a l l  three cases, the solutions accurately recuperate the 

measured chromatogram, r was estimated 5x10-5 and q(k) w a s  ob- 

t a i n e d  through Eqn. (22). Figs. 12a and 12b show a qui te  accept- 

able solution, where a l l  oligomers from dimer t o  hexamer a re  now 

clear ly  separated. The adjustments employed i n  t h i s  f i r s t  solution 

are:  f = 0 , and a C gain of 1.25 for  Eqn. (22). 

With C gains higher than 1.25, negative values i n  i(k/M) are 
produced. This s i tua t ion  is represented by Figs. 12c and d, where 

- f = 0 but C = 75. This value of C w i l l  clearly generate an 
overestimated q(k) .  I n  t h i s  case, and i n  s p i t e  of the negative 

values i n  G(k/M), the low molecular weight peaks appear t o  be 

b e t t e r  separated, and two extra higher molecular weight components 

seem t o  be a l so  detected. The innovations sample mean and variance 

indicated i n  Fig. 12d are lower than i n  Fig. 12b, but t h e  esti- 

mated t a z ( k )  limits confirm t h a t  t h i s  solution is not adequate. 

Figs. 12e and f show a solution which is very similar t o  t h a t  

of Figs. 12a and b; but i n  t h i s  case f = (0 O. . . l )  and C = 2 

were adopted. Here again, by increasing C ,  negative values are 

a l s o  produced. 

The estimates of Figs. 12a and 12e a re  the best obtained. 

The oligomers are clear ly  separated, and t h e i r  retention t i m e s  

could be used for  a more accurate column cal ibrat ion.  As expected, 

those retention times are ,  with good approximation, linearly re- 
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I I 

I I 

.W 

I. 

-.W 

I 

FIGURE 12 : Example 3; solutions considering u(k) white with the 
appropriate C gain (a ,b);  with C overvalued (c ,d);  
and considering u(k)  a random walk sequence with t h e  
appropriate C (e , f ) .  
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INVERSE OPTIMAL FILTERING METHOD 2859 

l a t ed  t o  the  logarithm of t h e i r  molecular weights. 

The r e su l t s  of Fig. 12 seem t o  indicate  t h a t  the lower mole- 

cular  weight species a re  b e t t e r  separated t h a n  the higher. This 

bias  i s  also ref lected by the  fact  t ha t  i n  a l l  cases, t h e  innova- 

t i ons  adequately match t h e i r  ? Q : ( ~ )  l i m i t s  only on the  r ight  

hand s ide  of t he  chromtogram. A possible explanation t o  t h i s  ef- 

f ec t  is tha t  the spreading function is, i n  r ea l i t y ,  non-uniform. 

I n  t h i s  case, t he  given is only accurate at the  low molecu- 

l a r  weight end. I f  as predicted by (21,22), the instrumental 

broadening increased towards intermediate retention volumes, then 

t h e  correction would be m r e  pronounced on the lef t  hand s ide  of 

t he  curve, and t h e  bias  would tend t o  be compensated. 

g(k) 

CONCLUSIONS 

The proposed technique has proved very powerful with both 

synthet ic  and real examples, and could be clear ly  extended t o  cor- 

rect ions i n  hydrodynamic chromatography (13,14). The r e su l t s  of 

Example 2, a r e  b e t t e r  than those of other techniques. The computer 

program w a s  w r i t t e n  i n  FORTRAN 77 for  a VAX 11/780 computer, and 

i s  avai lable  from the  authors. 

The main advantages of t he  mthod are: i) it is numerically 

very ' robust ' ,  thus allowing t h e  solution of pa r t i cu la r ly  ill-con- 

dit ioned problems; ii) because a s tochast ic  version of Eqn. (1) is  

employed, a l l  'a p r io r i '  information on the  baseline noise m y  be 

conveniently employed; iii) under cer ta in  ideal l ized conditions , 
t h e  solution is optimal from the standpoint of the estimation er- 
ro r  variance; i v )  the state-space representation of the system 

spreading function is obtained without calculations,  thus in-  
volving no assumptions about t he  shapes of t he  cal ibrat ion curves; 
v )  the innovations analysis provides very powerful solution 

checks, and v i )  t he  measurement noise is  eliminated from the cor- 

rected chromatogram and the  SNR of is normally higher than 

that of z (k )  . 
y(k) 
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The min drawback of the method deals with the relatively 

s ignif icant computational cost involved. With regards to  memory, 

not only the system mtrix H* and the measured and calculated 

sequences nust be stored, but (more important) the whole se t  of 
matrices 2(k/k) . The computation time is a lso  re la t ively high. 

For example, t o  solve a n  80 point chromatogram with a calibration 

curve of 55 points (Example 3 above), approximately 12 minutes are  

required for  the complete calculation, with half that time insumed 
i n  t h e  fixed-interval smoother stage. The computation time in-  
creases with approximately the square of the system order n; and 

i n  the K a h n  f i l t e r  section, the  main computational burden is re- 

lated t o  the solution of the discrete Riccati equation. Note that  

if the same calibration g(k,&) is t o  be repeatedly used, and 

the  variances q and r are  maintained constant, then th i s  equa- 

t ion  my be solved only once. Furthermore, when q and r are 

constant and t h e  spreading function is uniform, then only t h e  

steady s t a t e  solution of t h a t  equation is required. 

I n  a l l  cases considered, the  resul ts  of the fixed-lag smooth- 

e r  when the lag was made equal t o  c or d were very similar t o  

those of the fixed-interval smoother. Clearly, i f  the fixed-lag 

smoother results are adequate, not only the computation time is 
approximately halved, but also the storage of the covariance m- 
t r i ce s  s e t  is no longer required. 

I n  t h i s  work, the s ta te  variables [and consequently u(k) ]  

were assumed white processes i f  2 = 0 , and random walk processes 

when 2 = (0 0. ..1) . Both assumptions were seen t o  provide satis- 

factory resul ts ,  but the innovations mean w a s  i n  a l l  cases smaller 

wi th  r. = (0 O...l) . As a counterpart i n  t h i s  last case, the  es- 

timation of q(k) becomes more complex. Theoretically, t h e  best 

resul ts  would require a specification of vector tha t  included 

a l l  available infornation about u(k) . This was found not neces- 

sary i n  the processing of chromatograms, but i n  a different con- 
t ex t ,  interesting e f for t s  have been done i n  t h i s  direction al- 

though mainly dealing with t ie - invar ian t  systems (23,24). I n  a 
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way, an appropriate estimation of q(k) compensates a ra ther  

crude estimation of s. 
As explained above, the main  advantage of t he  state-space 

time-varying m d e l  proposed is tha t  no calculations for  i ts  devel- 

opment a re  required. The high order of t h e  m d e l  so produced, 

makes the smoother computation a relat ively arduous task,  however. 
Alternatively,  parameter estimation procedures could be employed 

t o  ident i fy  the system through lower order mdels .  This i den t i f i -  

cat ion stage could be implemented off-l ine,  and then repeatedly 

used for  a given calibration. Another po ten t i a l  advantage of t h i s  

procedure is the elimination of the measurement noise from the  set 
of curves g(k,&);  while t he  main disadvantage is that elaborate 

iden t i f i ca t ion  procedures for  time-varying systems are not yet 

f u l l y  developed. The other possible mdi f i ca t ion  t o  the  proposed 

technique deals with the implementation of a variable gain scheme 

f o r  a n  on-line estimation of q(k) (25).  Basically, t he  problem 

consis ts  i n  choosing, along the  calculation, the values of q(k) 

which minimize the difference between the observed and the  esti- 
mated innovat ions variance. 
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